Heat shock protein 90 and tyrosine kinase regulate eNOS NO* generation but not NO* bioactivity.
نویسندگان
چکیده
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.
منابع مشابه
Stimulation of receptor-mediated nitric oxide production by vanadate.
Nitric oxide (NO) production by endothelial cells in response to bradykinin (Bk) treatment was markedly and synergistically enhanced by cotreatment with sodium orthovanadate (vanadate), a phosphotyrosine phosphatase inhibitor. This enhancement was blocked by tyrosine kinase inhibitors. Calcium ionophore- (A23187) activated production of NO was also enhanced by cotreatment with vanadate. No sign...
متن کاملAgonist-specific differences in mechanisms mediating eNOS-dependent pial arteriolar dilation in rats.
Nitric oxide (NO), derived from the endothelial isoform of NO synthase (eNOS), is a vital mediator of cerebral vasodilation. In the present study, we addressed the issue of whether the mechanisms responsible for agonist-induced eNOS activation differ according to the specific receptor being stimulated. Thus we examined whether heat shock protein 90 (HSP90), phosphatidylinositol-3-kinase (PI3K),...
متن کاملActivation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase.
Metformin, one of most commonly used drugs for the treatment of type 2 diabetes, improves vascular endothelial functions and reduces cardiovascular events in patients with type 2 diabetes, although its mechanisms remain unknown. The current study aimed to elucidate how metformin improves endothelial functions. Exposure of cultured bovine aortic endothelial cells (BAECs) to clinically relevant c...
متن کاملEstradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase.
BACKGROUND Estradiol activates endothelial nitric oxide synthase (eNOS) by mechanisms that involve estrogen receptor-alpha (ERalpha), protein kinase B/Akt, mitogen-activated protein kinases, and heat shock protein 90 (HSP90). Recently, AMP-activated protein kinase (AMPK), an enzyme that plays a crucial role in cellular adaptation to metabolic stress, has been implicated in physiological eNOS ac...
متن کاملFlow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 2 شماره
صفحات -
تاریخ انتشار 2004